Investigating Urban-scale Macroscopic Fundamental Diagram: Simulation Findings for Edmonton's Urban Network

Gang Liu, Peter Xin, Arun Bhowmick
Urban Analysis | Systems Analytics
Urban Form and Corporate Strategic Development | City Planning

Outline

- Background and Motivation
- Methodology
 - Simulation Framework
 - Simulated Network
- Result Discussion
- Findings and Future Applications

Fundamentals of Traffic Flow

• Flow = Speed * Density

High Density Low Speed

Highest Volumes Medium Density

Highest Volumes Medium Speed

Maximum Density No speed or flow

Edmonton

Flow Propagation in Dynameq

Car-following: "simplified" car following model

(Source:INRO 2010 Training Presentation)

Traffic Performance Measures-Mobility

- Constructing new infrastructure or expanding existing infrastructure
- Active Traffic Management (ATM) and Intelligent Transportation Systems (ITS)

- Roadways and Intersections: speed, delay, traffic volumes, volume/capacity ratio, level of service
- Corridor: Travel Time
- Localized and Network Wide: ?

(Source:https://edmonton.skyrisecities.com/news/2017/09/new-walterdale-bridge-opens-traffic)

(Source:https://www.taprootedmonton.ca/stories/2017/syncing-traffic-lights-tech-fixes-enduring-challenges/)

Macroscopic Modeling of Urban Network

- Macroscopic Fundamental Diagram (MFD)
 - a proper macroscopic description of the traffic flow state in urban network
 - describes the network-average relation between the flow, density
 - and speed
 - a property of the network infrastructure and control.

An MFD exists

→ 3 regions

Motivation and Objective

- To investigate the capability of using DTA for new traffic performance measures
 - the existence of a MFD for Edmonton's road network
 - the factors that influence the MFD shape

Study Methodology

Simulated Network

Year	Network	Centroids	Nodes	Links	Signalized	Unsignalized
2015	City Wide	1119	11647	29749	1064	10583
2027	City Wide	1125	11979	30623	1127	10852
2027	Central Area	210	1456	3949	232	1224

 Another three demand scenarios are composed, including 70%, 120% and 150% demand profiles.

Edmonton

Result Discussion-MFD (1)

(a) City Wide Network

Result Discussion-MFD (2)

Density (Vehicle\Km\Lane)

400

Result Discussion-MFD (3)

Result Discussion-MFD (4)

Result Discussion-Speed vs Flow (1)

Result Discussion-Speed vs Flow (2)

Findings

- Edmonton's city wide network and central area network had a clearly defined density-flow MFD
- Its shape was sensitive to the total traffic demands and network layout.
- This MFD can be used as a tool for traffic control and accessibility improvement in the central area and city wide area.

Potential Applications of MFD

